Relationship between the membrane potential of the contractile vacuole complex and its osmoregulatory activity in Paramecium multimicronucleatum.
نویسندگان
چکیده
The electric potential of the contractile vacuole (CV) of Paramecium multimicronucleatum was measured in situ using microelectrodes, one placed in the CV and the other (reference electrode) in the cytosol of a living cell. The CV potential in a mechanically compressed cell increased in a stepwise manner to a maximal value (approximately 80 mV) early in the fluid-filling phase. This stepwise change was caused by the consecutive reattachment to the CV of the radial arms, where the electrogenic sites are located. The current generated by a single arm was approximately 1.3x10(-10) A. When cells adapted to a hypotonic solution were exposed to a hypertonic solution, the rate of fluid segregation, R(CVC), in the contractile vacuole complex (CVC) diminished at the same time as immunological labelling for V-ATPase disappeared from the radial arms. When the cells were re-exposed to the previous hypotonic solution, the CV potential, which had presumably dropped to near zero after the cell's exposure to the hypertonic solution, gradually returned to its maximum level. This increase in the CV potential occurred in parallel with the recovery of immunological labelling for V-ATPase in the radial arm and the resumption of R(CVC) or fluid segregation. Concanamycin B, a potent V-ATPase inhibitor, brought about significant decreases in both the CV potential and R(CVC). We confirm that (i) the electrogenic site of the radial arm is situated in the decorated spongiome, and (ii) the V-ATPase in the decorated spongiome is electrogenic and is necessary for fluid segregation in the CVC. The CV potential remained at a constant high level (approximately 80 mV), whereas R(CVC) varied between cells depending on the osmolarity of the adaptation solution. Moreover, the CV potential did not change even though R(CVC) increased when cells adapted to one osmolarity were exposed to a lower osmolarity, implying that R(CVC) is not directly correlated with the number of functional V-ATPase complexes present in the CVC.
منابع مشابه
Electrical properties and fusion dynamics of in vitro membrane vesicles derived from separate parts of the contractile vacuole complex of Paramecium multimicronucleatum.
The contractile vacuole complex of Paramecium multimicronucleatum transforms into membrane-bound vesicles on excision from the cell. The I-V relationship was linear in a voltage range of -80 to +80 mV in all vesicles, despite being derived from different parts of the contractile vacuole complex. No voltage-gated unit currents were observed in membrane patches from the vesicles. Vesicles derived...
متن کاملElectrophysiology of the in situ contractile vacuole complex of Paramecium reveals its membrane dynamics and electrogenic site during osmoregulatory activity.
In the freshwater protozoan Paramecium multomicronucleatum, excess cytosolic water, acquired osmotically, is segregated and expelled to the cell exterior through the activity of the contractile vacuole complex. This process keeps the cell volume constant. The electrophysiological parameters of the organelle were measured in situ using a fine-tipped microelectrode inserted into the contractile v...
متن کاملOsmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole.
In vivo K(+), Na(+), Ca(2+) and Cl(-) activities in the cytosol and the contractile vacuole fluid of Paramecium multimicronucleatum were determined in cells adapted to a number of external osmolarities and ionic conditions by using ion-selective microelectrodes. It was found that: (1) under standardized saline conditions K(+) and Cl(-) were the major osmolytes in both the cytosol and the contra...
متن کاملCellular membranes that undergo cyclic changes in tension: Direct measurement of force generation by an in vitro contractile vacuole of Paramecium multimicronucleatum.
The contractile vacuole of the fresh water protozoan Paramecium is a membrane-bound vesicle that expels excess cytosolic water, acquired osmotically, through its periodic exocytotic activity. The in vitro contractile vacuole, isolated in a small amount of cytosol from the Paramecium cell and confined under mineral oil, showed periodic rounding and slackening at regular intervals for an extended...
متن کاملThe Mechanism of the Nephridial Apparatus of Paramecium Multimicronucleatum
Our recent analysis of the nephridial apparatus of Paramecium multimicronucleatum by high-speed cinematography (300 fps at X 250) indicates that before the water expulsion vesicle ("contractile vacuole") is completely voided of fluid during expulsion, the ampullae surrounding and confluent with the vesicle swell with fluid entering from their respective nephridial tubules. Once the membranes of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 20 شماره
صفحات -
تاریخ انتشار 2002